본문 바로가기

디스크 브레이크 구조와 장점 및 단점

음식요정 2022. 11. 9.

자전거, 자동차, 이륜차 등 이동수단에 사용되는 브레이크 장치의 한 종류이다.

디스크 브레이크는 차축에 금속제의 원판형 로터를 부착하고 로터의 양쪽에서 마찰이 큰 소재로 만들어진 패드를 유압 혹은 기계기구의 힘으로 압착하여 발생하는 마찰력으로 인하여 차량의 운동 에너지가 열에너지로 전환되면서 제동이 걸린다.

 


장단점


모든 마찰식 브레이크는 운동 에너지가 열에너지로 전환되는 원리이기 때문에 방열 성능이 뛰어날수록 고속에서 강한 제동력을 발휘하는데, 디스크 방식은 기존의 드럼 브레이크방식보다 방열성능이 뛰어난 이점이 있다. 무조건 마찰이 높은 소재로만 만들어봤자 방열 성능이 딸리면 초기 감속력은 높을 지 몰라도 순식간에 페이드 현상이 와서 제동력을 상실한다. 운동 에너지를 얼마나 신속하게 열에너지로 바꿀 수 있는지, 그리고 발생한 열에너지를 얼마나 효율적으로 제거할 수 있는지, 그리고 이 과정이 얼마나 빠르고 일정하게 일어나는지가 디스크 브레이크의 성능을 결정한다.

반면 디스크와 캘리퍼가 외부로 노출되어 있기에 튀어오르는 이물질등으로 인한 손상 가능성이 상대적으로 높으며, 브레이킹으로 달아오른 디스크가 막바로 물과 접촉하면 열변형이 발생, 주행중 또는 브레이킹시 핸들 떨림의 원인으로 작용한다. 때문에 대부분 차량은 디스크 내측에는 더스트 커버가 장착된다. 또한 비포장 도로에서 주행하는 랠리차량의 경우 이물질로 인한 휠 허브 및 브레이크 계통 손상 방지를 위해 휠의 내측 절반 가량은 완전 막혀있고, 외측으로 절반 정도만이 스포크로 열린 형태를 지닌다.

 



캘리퍼의 작동방식에 의한 구분

단동식(Floating Caliper) 복동식(Fixed Caliper)



단동식과 복동식이 있으며, 단동식은 패드를 눌러주는 피스톤이 한쪽에만 있으며 캘리퍼 몸체 자체가 슬라이드 핀에 의해 좌우로 유동이 가능하게 함으로써 디스크가 휘어지지 않으면서 캘리퍼가 디스크를 움켜쥘 수 있다. 그래서 플로팅(Floating) 방식이라고도 부른다. 반면 복동식은 피스톤이 양쪽에 있으며 캘리퍼 몸체가 완전 고정되어 움직이지 않으므로 영어로는 Fixed Caliper라고 부른다. 피스톤이 양쪽에서 누르기 때문에 대향 피스톤 방식이라고도 부른다.

단동식은 적은 갯수의 피스톤으로 큰 마찰력을 얻을 수 있고 생산단가가 저렴하나, 절대적인 제동력은 양쪽 패드 중 한쪽이 비효율적으로 작동할수 밖에 없기 때문에 같은 디스크 사이즈의 복동식보다 부족하다. 복동식은 마찰력을 고르게 디스크에 전달할 수 있고 사이즈가 큰 패드를 사용할 수 있어 제동력이 좀 더 강하지만, 캘리퍼의 부피가 커서 장착할 수 있는 휠의 최소 지름 사이즈 및 옵셋(Offset)의 제약이 있다. 또한 설계와 제작이 복잡해서 과거 에쿠스 캘리퍼를 보면 여러등분으로 분할해서 주조한 부품을 조립해서 만들었는데, 요즘은 제조기술이 발전해서 복동식을 한덩어리의 알루미늄으로 주조해서 가공해 만드는 모노블록 타입이 나온다. 최신의 제네시스 차량에 들어가는 만도(일명 만렘보) 캘리퍼가 모노블록의 대표적인 예.

일반적으로 승용차, 저배기량 이륜차들의 경우 단동식이 주로 장착되며, 이유는 당연히 원가 절감. 싼값이라고 해도 차를 세울 수 있는 괴력을 지니고 있기에 채용된다. 반면 기본 속도부터가 남다른 스포츠카, 슈퍼카, 스포츠바이크들은 복동식이 채용된다.

한가지 주의할 점은 캘리퍼의 피스톤 갯수에 따라서 브레이크를 잡는 압력이 더 강해지는건 아니라는 점이다. 그럼에도 고성능차에서 피스톤의 갯수가늘어나는 이유는 패드의 면적이 넓어지기 때문에 면적이 넓어지는 만큼 고르게 압력을 주기 위한 목적이 크다. 즉, 제동력은 로터의 크기와 브레이크 패드의 면적에서 결정된다. 이를 차량의 특성에 맞게 섬세하게 조정하는것은 어려운 일이라서 생각외로 많은 차량에서 피스톤의 갯수는 늘리되, 섬세한 제동력 튜닝은 패드의 면적을 깎아내서 세팅하는 방식을 사용한다.

 


디스크의 냉각방식에 따른 구분

 


플로팅 방식(단동식)캘리퍼와 솔리드 
디스크가 조합된 방식
대향 피스톤 방식(복동식)캘리퍼와 벤틸레이티드 
디스크가 조합된 방식




솔리드 디스크와 벤틸레이티드 디스크가 있다.

솔리드 디스크는 그야말로 원판 한장의 형태로, 제조원가가 저렴하고 디스크 중량이 가볍다. 다만 디스크의 열용량을 초과하는 과도한 브레이킹시 냉각이 잘 안되어 변형이 올 수 있다. 중량이 얼마 안나가는 이륜차나 저출력 승용차, 혹은 브레이킹 용량이 적은 후륜에 주로 적용된다.

벤틸레이티드 디스크(줄여서 V디스크로 표기)는 두장의 디스크 사이에 냉각을 위한 베인이 있는 구조이다. 방열이 신속하고 내구성이 좋은 대신 솔리드디스크보다 무게가 무겁다. 무게와 부피가 커서 2륜차에서는 보기 힘들다.

오늘날 거의 대부분의 승용차는 전륜-V디스크 / 후륜-솔리드 디스크 조합을 사용하고 있다. 이는 전술된 바와 같이 전륜에 제동부담이 크기 때문으로, 웬만큼 장시간 주행을 해도 리어 디스크의 온도는 그리 높지 않다. 같은 이유로 거의 모든 차량의 전륜의 디스크 직경이 후륜보다 크다. 심지어 가장 저렴한 승용차 축에 속하는 경차도 전륜은 V디스크를 사용하며, 후륜은 고급차로 올라가도 솔리드 디스크를 사용하는 경우가 많다. 쓸데없이 돈을 더 써서 현가하질량을 늘릴 순 없기 때문에, 그랜저도 그렇고 G80도 2.2d/2.5T 까지는 솔리드 디스크다.

2021년 6월 현재 전/후륜 모두 V-디스크를 사용한 국산차는 벨로스터 N 퍼포먼스 패키지, G70/스팅어 브렘보 사양, G80 3.5T, G90, K9, GV70 3.5T, 팰리세이드, GV80, QM5, QM6 뿐이다. 벨로스터 N 퍼포먼스 패키지의 후륜 브레이크와 노멀 패키지의 전륜 브레이크는 2세대 K5 GT에 처음 사용되었는데, 큰 호평을 받으며 동호회를 중심으로 모비스 튜닝 대상이 되고 있다.

 

 



자동차용 디스크 브레이크


대향 피스톤 방식(복동식), 표면에 파여있는 그루브 패턴은 제동 시 초기 물림, 브레이크 제어, 릴리즈 등에 영향을 미친다.
듀얼 캘리퍼 타입.
대형 상용차량에 쓰이는 에어 디스크 브레이크. 드럼 브레이크 보다 떨어지는 제동력을 보완하기 위해 순정으로 대향 피스톤 방식이 적용된다.

인보드 디스크 브레이크의 예


차 바퀴와 함께 회전하는 디스크 양면에 유압식 기구(캘리퍼)와 패드를 장착, 패달을 밟으면 패드가 유압에 의해 디스크 쪽으로 조여지면서 감속력을 얻는 방식으로 구조도 간단해 정비/교체가 용이하고 안정적으로 제동을 할 수 있다는 장점이 있다.

728x90


이런 디스크들은 보통 금속제로 되어 있어 제동시 마찰에 의해 열을 받게 되는데, 아무래도 금속이 열을 받으면 팽창하거나 변형하거나 해서 제동력이 떨어지는 경우가 있기 때문에 많은 경우 디스크의 방열 성능을 더욱 높이기 위해 위에 언급한 V디스크를 적용한다. 요즘은 거의 대부분의 승용차의 전륜 브레이크는 V디스크를 쓴다. 제동시 무게가 앞으로 쏠리기 때문에 앞바퀴 브레이크가 더 부담을 받기 때문이다. 대부분 승용차가 뒷바퀴에는 싱글 디스크, 지름이 더 작은 로터를 쓴다. 심지어 소형차, 경차나 저가 차량은 뒷바퀴에는 드럼 디스크를 쓰기도 한다. 물론 무겁거나 출력이 높은 차는 네 바퀴 다 벤틸레이티드 디스크 로터를 쓴다. 고성능 차량은 크고 두꺼운 디스크 로터를 써야 하는데 이로 인한 무게의 불리함을 극복하려고 가운데 부위(벨하우징)를 알루미늄 합금으로 제작하여 조립한 2피스 디스크 로터가 적용된다.

추가적으로 타공이나 슬롯을 넣어주기도 한다. 브레이크 패드 온도가 높아지면 금속 가루같은 브레이크 패드 물질을 묶어두는 레진같은 바인더가 녹으면서 기체로 바뀌는데, 이 기체가 로터와 패드 사이에 에어하키 테이블처럼 서로 닿지 못하게 만들어 주는 효과가 있는데, 타공과 슬롯 처리를 하면 그 기체가 자연스럽게 빠질 수 있도록 하는 효과가 있다고 한다. 그리고 타공 처리는 냉각 효과도 있다. 단점으로는 디스크의 강도를 약화시키며, 특히 타공 로터는 구멍을 따라 응력이 발생해서 순정이 태생적으로 튼튼한 타공 로터가 아니라 두께는 평범한 순정 로터랑 동일한데 애프터마켓으로 나온 타공 로터는 굉장히 자주 파손된다. 게다가 요즘 나오는 브레이크 패드는 바인더 가스 생성이 굉장히 적어서 필요성이 거의 없다. 단점이자 장점이라고 볼 수 있는 점은 슬롯 로터가 특히 강판처럼 브레이크 패드를 금방 갈아버리는 성질이 있는데, 좋게 보면 브레이크 패드를 금방 소모하면서 온도를 낮추고 열변환이 이루어진 표면을 갈아버리는 효과를 볼 수 있고, 나쁘게 보면 패드 소모가 심해 먼지도 많이 나고 지갑도 금방 털리는 단점이 있다. 게다가 얇은 패드는 로터에서 피스톤으로 열이 더 많이 전달되어 브레이크액이 더 쉽게 과열된다.

현재 해외 자동차 커뮤니티의 의견으로는 스포츠 드라이빙이나 트랙주행용 차량은 오히려 싼 로터를 쓰고 때가 되면 금방금방 교체하는게 타공이나 슬롯 로터를 쓰는 것 보다 저렴하고 파손 걱정에서 안전하다고 하나, 타공 슬롯 로터의 짜세(..)는 무시할 수 없기에 튜닝을 좋아하는 사람의 차에 자주 장착되곤 한다.

유압을 가해 주는 피스톤의 개수가 많으면 더욱 고른 제동력을 보일 수 있으므로 고성능 차량을 중심으로 4개 이상의 피스톤이 자주 사용되고 있다. 캘리퍼를 장착하는 위치에 따라 앞쪽에 있으면 전치형, 뒷쪽에 있으면 후치형이다. 전치형 캘리퍼는 제동 시 너클을 바닥으로 누르며, 후치형 캘리퍼는 너클을 들어올린다. 후치형 캘리퍼가 냉각에 유리하며, 제동시 너클을 들어버리므로 현가하질량을 줄일 수 있다. 여기에 캘리퍼 질량을 차체 중심으로 몰아버릴 수 있고, 제동 시 하중이동으로 생기는 피칭의 역방향 피칭을 만들어 피칭이 줄어드는 등의 장점을 고려하면 성능적으로 가장 우수한 것은 전륜 후치형, 후륜 전치형 조합이다. 그러나 작정하고 달리기 위해 만드는 스포츠카나 슈퍼카가 아니면 캘리퍼의 위치에 따른 효과가 별로 안 느껴지기 때문에 양산차 제조사는 서스펜션, 스티어링 설계가 끝난 뒤 남는 자리에 브레이크 캘리퍼를 배치하며, 전륜 전치형, 후륜 후치형 조합이 가장 많이 사용된다. 스포츠카나 슈퍼카 등의 고성능 차량은 조금이라도 브레이크의 성능을 끌어올리기 위해 웬만하면 전륜은 후치형, 후륜은 전치형으로 배치하는 편이다.

초고성능 차량의 경우 금속 디스크 사용시 발열로 접촉한 브레이크 패드를 태워버려 브레이킹 성능이 대폭 하락할 우려가 있어 카본-카본 세라믹제 브레이크 디스크를 사용하는 경우도 있다. 세라믹 디스크는 무게가 가벼워 가감속 성능 및 현가하질량 감소를 통한 접지력 증대의 효과도 있다. 게다가 일반 철제 로터보다 강성이 월등히 뛰어나고 열을 받아도 휘어지거나 하는 문제가 적고, 브레이크를 쓰면서 로터가 철제 로터에 비해 훨씬 덜 갈린다. 별다른 사고가 있지 않는 한 사실상 차량 수명과 함께 반영구적으로 쓸 수 있는 로터이다. 물론 이런 브레이크의 부품값은 그야말로 상상을 초월하여, 디스크 4개 1대분 부품값만 소형차 1대 값에 육박하는 경우도 있다. 포르쉐 세라믹 컴포지트 브레이크 PCCB의 경우 공임제외 4짝 1,400만원이라는 초월적인 가격을 자랑한다. 게다가 철제 로터와는 별개로 카본 세라믹 디스크 전용 패드가 따로 있으며 이 가격도 무지막지하다.

하지만 주차 브레이크 용도로는 디스크 브레이크로는 성능이 딸리는 단점이 있으므로 후륜 디스크 브레이크 허브쪽에 드럼 브레이크를 탑재한 drum in hat(DIH) 구조의 브레이크가 주차 브레이크로 사용된다. 그러나 차량 제조사들도 이런 복잡한 구조를 개선하고 무게와 원가를 줄이기 위해 디스크 브레이크에 케이블 기구로 뒷쪽 캘리퍼 피스톤이 움직여 주차 브레이크 기능을 수행하게 만드는 경우가 증가하고 있다.

요즘 대부분의 차량은 디스크 및 캘리퍼가 휠 내측 허브와 너클에 장착되지만, 인보드 디스크 브레이크라고 해서 아에 CV구동축의 내측에 붙는 방식이 있다. 장점으로는 현가질량 감소와 차량 무게중심의 중앙집중화를 통한 운동 성능 향상, 상대적으로 이물질로부터 안전한 차량 내측에 있어서 디스크 손상 우려가 적은 점, 휠과의 간섭걱정 없이 큰 디스크와 캘리퍼를 장착할 수 있다. 단점은 냉각에서 불리한 측면이 있고, 엔진괴 미션을 가로배치한 전륜구동 차량 처럼 내측 공간이 부족할 경우 인보드로 탑재가 힘들며, 구동축이 원래 받는 가속토크와 반대방향의 제동토크까지 받게되어 구동계의 부담이 커지고 급제동시 브레이크가 장착된 구동계 전체가 차체를 쾅 치는 충격이 오기 때문에 이를 없애기 위한 마운트 설계가 복잡해진다. 그리고 비구동륜의 경우 인보드 방식을 쓰려면 필요없던 구동축을 장착해야 하니 이점이 없다.

이와는 별개로, FR이나 4WD차량, 옛날 경주차들의 경우 추진축이나 CV조인트쪽에 디스크 로터를 추가로 설치하는 경우도 있다. 승용차에선 이제 볼 수 없는 방식이지만, 평상시보다 적재물 추가시 훨씬 무거워지는 트럭이나 트레일러 등을 견인하는 픽업 트럭의 추가 제동력 확보를 위해서 드라이브 라인 브레이크라는 장치를 장착하는 경우도 있다. 주차 브레이크용의 센터 드럼과는 별개로 디스크 + 캘리퍼 구조로 장착되며, 여기서 한발 더 나가면 엔진의 냉각수까지 끌어들여서 냉각하는 제품까지 튜닝용품으로 나온다. 의외로, 자동차는 아니지만 경운기에도 쓴다. 트레일러를 달 때, 그 후륜 축에 디스크 브레이크를 쓰고 있다. 무거운 것을 자주 싣고, 험한 데를 가야 하기 때문.

여담으로 디스크 브레이크의 성능은 디스크의 구경(지름)에 비례하기 때문에 버스가 전통적인 스틸 디스크를 사용하더라도 엄청난 제동력을 보이는 것은 이것 때문이다.

유명한 브레이크 제조사로는 한국의 만도와, 독일의 ATE, 일본의 닛신(日信工業, Nissin)과 아케보노(曙ブレーキ, Akebono), 미국의 TRW나 반딕스가 일반 양산 차량용 순정 브레이크 하드웨어를 주로 공급하며, 고성능 모델이나 레이싱용으로는 흔히 브레이크 4대 천왕으로 일컫는 그 유명한 이탈리아의 브렘보(Brembo)와, 영국의 AP레이싱(AP Racing)과 알콘(Alcon)이, 그리고 독일의 무빗(MOVIT) 브레이크가 있다. 기타 튜닝용 애프터마켓 내지, 레이싱용으로는 미국의 스탑테크(Stoptech)와 윌우드(Wilwood), 로토라(Rotora)가 있으며 일본의 프로젝트 뮤 등이 뛰어난 성능과 착한 가격으로 괜찮은 가성비를 내세우며 4대 천왕들의 아성에 도전중이다.

브레이크에 반드시 장착되어야 하는 가장 중요한 핵심 소모품인 브레이크 패드의 경우에는 의외로 한국이 세계적으로도 상당한 점유율을 자랑중에 있는데, 정작 한국사람들은 잘 모르는(...) 강소기업이 좀 있다. 대표적으로 왠만한 일반인들도 한번쯤은 들어본 상신 브레이크나, 한타(프릭사) 브레이크 이외에도, 엘림 브레이크와 홍성 브레이크, KB오토시스(구 한국베랄)와 대화 브레이크등이 수출 역군으로 기술력을 세계적으로 인정받으며 활발히 활동중에 있다. 비교적 신생업체이긴 하나, 애프터마켓 튜닝이나 레이싱용의 브레이크 패드 분야에서 뛰어난 성능과 합리적인 가격으로 상당한 주목을 받고 있는 데피고(Defigo) 역시 한국 기업이다.


오토바이용 디스크 브레이크


대체적으로 큰 틀은 MTB와 크게 차이나지 않는다. 핸들에 마스터 실린더와 레버를 장착하고, 레버의 움직임에 따라 유압 호스를 통해 캘리퍼에 유압을 전달하여 패드를 작동, 디스크를 붙잡아 정지시키는 방식이다.
다만 속도가 자전거보다 훨씬 빠르기 때문에 브레이크의 용량과 디스크의 두께에서 차이가 나게 된다.

또한 고속에서 제동시 굉장한 열이 발생하는데, 저속 스쿠터 등의 디스크는 발열이 적어 디스크가 그대로 휠에 장착되지만, 고속에서 작동하는 브레이크는 열이 허브베어링에 전달되지 않도록 대부분 별도의 브라켓(혹은 캐리어라고도 부름)을 통해 휠과 연결된다. 브라켓들은 대부분 열 및 변형에 내성을 가진 경량 소재로 제작된다. 물론 디스크의 무게를 줄여주는 효과도 덤이다.

오토바이는 브레이크 사이즈가 작고 자동차처럼 진공으로 제동력을 보조받을 수 없고 오로지 라이더의 손가락 힘으로만 세워야 하기 때문에 고성능 이륜차에서는 디스크와 캘리퍼를 전륜에 두개를 달게 된다. 출력이 작고 무게가 가벼운 스쿠터는 1피스톤 짜리로 충분하나, 고성능 모델은 4개이상의 피스톤을 가진 캘리퍼가 쓰인다.

마스터 실린더의 경우 핸들과 평행하게 배치된것과 수직으로 배치(래디얼 마운트)된 타입으로 나뉜다. 보통 수평형이 보급형이고 수직이 고급형이다. 수직형이 손가락으로 브레이크 답력을 곧바로 느낄 수 있어 컨트롤이 편하다.

튜닝을 할 경우 보통 적은 비용으로 큰 효과를 보는건 유압 호스를 고무호스에서 철사 등 질긴 재질로 외피를 감싼 메쉬호스이다. 고무호스는 유압력이 전해질때 팽창하면서 어느정도의 손실을 보는데 반해 메쉬호스는 팽창률이 적다. 그 다음은 소모품인 브레이크 패드를 고가형으로 바꾸고, 그 다음 효과를 크게 보는 건 마스터 실린더를 대용량으로 바꾸는 것이다. 이 경우 브레이크 오일통, 레버까지 바꾸게 된다. 보통 캘리퍼까지는 바꾸지 않는 편. 애초에 애프터마켓 제품이 나오는 기종이 많지 않다.

모터사이클용 브레이크 메이커는 차량용도 만드는 브렘보, 닛신, 윌우드 외에도 토키코, AP Racing 등 국가별로 여러 메이커들이 혼재한다.

보통 두카티, BMW Motorrad 등 유럽 메이커에는 순정으로 브렘보가 달려 있고, 혼다, 야마하 등의 일제 메이커에는 닛신제 브레이크가 순정으로 달려있다.

트리플 캘리퍼



닛신제 전륜용 4피스톤 레디얼마운트 캘리퍼를 3개 활용했고 캐리어는 알루미늄 덩어리를 깎아 만든거다. 이런건 공도 주행보다는 주로 브레이킹으로 후륜을 미끄러뜨린 뒤 드리프트 등의 묘기를 보이는 쇼바이크 용이다. 오토바이는 공도에서 후륜을 저렇게 강하게 제동해봐야 슬립 전도사고만 유발할 뿐이다.


비행기용 디스크 브레이크

 


비행기에서도 디스크 브레이크를 주요 제동수단 중 하나로 사용한다.

소형 비행기의 경우 자동차와 비슷한 방식의 싱글 디스크 브레이크를 사용하나 우리가 보통 타는 민항기 크기가 될 경우 거대한 크기의 다중 디스크 브레이크를 사용하며, 착륙 제동시에 발열이 엄청난 랜딩기어 브레이크 특성상 열 발산에 유리하도록 로터가 분할된 분할로터 다중 디스크 브레이크 및 브레이크 냉각팬을 사용하기도 한다. 그리고 노즈(트라이시클 방식)/테일기어(테일드래거)에 하중이 별로 실리지 않는 비행기 특성상 브레이크는 메인기어에 장착되어 있다.

A320의 카본 분할로터 다중 디스크 브레이크 분할로터 다중 디스크 브레이크의 구조




A320의 브레이크 팬, 덕트 내의 팬을 보면 된다.



경비행기의 디스크 브레이크



728x90
그리드형

'잡다한 지식 한스푼' 카테고리의 다른 글

탄생석 유래  (1) 2022.11.10
트위치 국내 화질 제한 우회 방법  (1) 2022.11.10
드럼 브레이크 구조와 장점및 단점  (1) 2022.11.09
중간선거 특징  (0) 2022.11.09
국내 골프장 목록  (0) 2022.11.04

자전거, 자동차, 이륜차 등 이동수단에 사용되는 브레이크 장치의 한 종류이다.

디스크 브레이크는 차축에 금속제의 원판형 로터를 부착하고 로터의 양쪽에서 마찰이 큰 소재로 만들어진 패드를 유압 혹은 기계기구의 힘으로 압착하여 발생하는 마찰력으로 인하여 차량의 운동 에너지가 열에너지로 전환되면서 제동이 걸린다.

 


장단점


모든 마찰식 브레이크는 운동 에너지가 열에너지로 전환되는 원리이기 때문에 방열 성능이 뛰어날수록 고속에서 강한 제동력을 발휘하는데, 디스크 방식은 기존의 드럼 브레이크방식보다 방열성능이 뛰어난 이점이 있다. 무조건 마찰이 높은 소재로만 만들어봤자 방열 성능이 딸리면 초기 감속력은 높을 지 몰라도 순식간에 페이드 현상이 와서 제동력을 상실한다. 운동 에너지를 얼마나 신속하게 열에너지로 바꿀 수 있는지, 그리고 발생한 열에너지를 얼마나 효율적으로 제거할 수 있는지, 그리고 이 과정이 얼마나 빠르고 일정하게 일어나는지가 디스크 브레이크의 성능을 결정한다.

반면 디스크와 캘리퍼가 외부로 노출되어 있기에 튀어오르는 이물질등으로 인한 손상 가능성이 상대적으로 높으며, 브레이킹으로 달아오른 디스크가 막바로 물과 접촉하면 열변형이 발생, 주행중 또는 브레이킹시 핸들 떨림의 원인으로 작용한다. 때문에 대부분 차량은 디스크 내측에는 더스트 커버가 장착된다. 또한 비포장 도로에서 주행하는 랠리차량의 경우 이물질로 인한 휠 허브 및 브레이크 계통 손상 방지를 위해 휠의 내측 절반 가량은 완전 막혀있고, 외측으로 절반 정도만이 스포크로 열린 형태를 지닌다.

 



캘리퍼의 작동방식에 의한 구분

단동식(Floating Caliper) 복동식(Fixed Caliper)



단동식과 복동식이 있으며, 단동식은 패드를 눌러주는 피스톤이 한쪽에만 있으며 캘리퍼 몸체 자체가 슬라이드 핀에 의해 좌우로 유동이 가능하게 함으로써 디스크가 휘어지지 않으면서 캘리퍼가 디스크를 움켜쥘 수 있다. 그래서 플로팅(Floating) 방식이라고도 부른다. 반면 복동식은 피스톤이 양쪽에 있으며 캘리퍼 몸체가 완전 고정되어 움직이지 않으므로 영어로는 Fixed Caliper라고 부른다. 피스톤이 양쪽에서 누르기 때문에 대향 피스톤 방식이라고도 부른다.

단동식은 적은 갯수의 피스톤으로 큰 마찰력을 얻을 수 있고 생산단가가 저렴하나, 절대적인 제동력은 양쪽 패드 중 한쪽이 비효율적으로 작동할수 밖에 없기 때문에 같은 디스크 사이즈의 복동식보다 부족하다. 복동식은 마찰력을 고르게 디스크에 전달할 수 있고 사이즈가 큰 패드를 사용할 수 있어 제동력이 좀 더 강하지만, 캘리퍼의 부피가 커서 장착할 수 있는 휠의 최소 지름 사이즈 및 옵셋(Offset)의 제약이 있다. 또한 설계와 제작이 복잡해서 과거 에쿠스 캘리퍼를 보면 여러등분으로 분할해서 주조한 부품을 조립해서 만들었는데, 요즘은 제조기술이 발전해서 복동식을 한덩어리의 알루미늄으로 주조해서 가공해 만드는 모노블록 타입이 나온다. 최신의 제네시스 차량에 들어가는 만도(일명 만렘보) 캘리퍼가 모노블록의 대표적인 예.

일반적으로 승용차, 저배기량 이륜차들의 경우 단동식이 주로 장착되며, 이유는 당연히 원가 절감. 싼값이라고 해도 차를 세울 수 있는 괴력을 지니고 있기에 채용된다. 반면 기본 속도부터가 남다른 스포츠카, 슈퍼카, 스포츠바이크들은 복동식이 채용된다.

한가지 주의할 점은 캘리퍼의 피스톤 갯수에 따라서 브레이크를 잡는 압력이 더 강해지는건 아니라는 점이다. 그럼에도 고성능차에서 피스톤의 갯수가늘어나는 이유는 패드의 면적이 넓어지기 때문에 면적이 넓어지는 만큼 고르게 압력을 주기 위한 목적이 크다. 즉, 제동력은 로터의 크기와 브레이크 패드의 면적에서 결정된다. 이를 차량의 특성에 맞게 섬세하게 조정하는것은 어려운 일이라서 생각외로 많은 차량에서 피스톤의 갯수는 늘리되, 섬세한 제동력 튜닝은 패드의 면적을 깎아내서 세팅하는 방식을 사용한다.

 


디스크의 냉각방식에 따른 구분

 


플로팅 방식(단동식)캘리퍼와 솔리드 
디스크가 조합된 방식
대향 피스톤 방식(복동식)캘리퍼와 벤틸레이티드 
디스크가 조합된 방식




솔리드 디스크와 벤틸레이티드 디스크가 있다.

솔리드 디스크는 그야말로 원판 한장의 형태로, 제조원가가 저렴하고 디스크 중량이 가볍다. 다만 디스크의 열용량을 초과하는 과도한 브레이킹시 냉각이 잘 안되어 변형이 올 수 있다. 중량이 얼마 안나가는 이륜차나 저출력 승용차, 혹은 브레이킹 용량이 적은 후륜에 주로 적용된다.

벤틸레이티드 디스크(줄여서 V디스크로 표기)는 두장의 디스크 사이에 냉각을 위한 베인이 있는 구조이다. 방열이 신속하고 내구성이 좋은 대신 솔리드디스크보다 무게가 무겁다. 무게와 부피가 커서 2륜차에서는 보기 힘들다.

오늘날 거의 대부분의 승용차는 전륜-V디스크 / 후륜-솔리드 디스크 조합을 사용하고 있다. 이는 전술된 바와 같이 전륜에 제동부담이 크기 때문으로, 웬만큼 장시간 주행을 해도 리어 디스크의 온도는 그리 높지 않다. 같은 이유로 거의 모든 차량의 전륜의 디스크 직경이 후륜보다 크다. 심지어 가장 저렴한 승용차 축에 속하는 경차도 전륜은 V디스크를 사용하며, 후륜은 고급차로 올라가도 솔리드 디스크를 사용하는 경우가 많다. 쓸데없이 돈을 더 써서 현가하질량을 늘릴 순 없기 때문에, 그랜저도 그렇고 G80도 2.2d/2.5T 까지는 솔리드 디스크다.

2021년 6월 현재 전/후륜 모두 V-디스크를 사용한 국산차는 벨로스터 N 퍼포먼스 패키지, G70/스팅어 브렘보 사양, G80 3.5T, G90, K9, GV70 3.5T, 팰리세이드, GV80, QM5, QM6 뿐이다. 벨로스터 N 퍼포먼스 패키지의 후륜 브레이크와 노멀 패키지의 전륜 브레이크는 2세대 K5 GT에 처음 사용되었는데, 큰 호평을 받으며 동호회를 중심으로 모비스 튜닝 대상이 되고 있다.

 

 



자동차용 디스크 브레이크


대향 피스톤 방식(복동식), 표면에 파여있는 그루브 패턴은 제동 시 초기 물림, 브레이크 제어, 릴리즈 등에 영향을 미친다.
듀얼 캘리퍼 타입.
대형 상용차량에 쓰이는 에어 디스크 브레이크. 드럼 브레이크 보다 떨어지는 제동력을 보완하기 위해 순정으로 대향 피스톤 방식이 적용된다.

인보드 디스크 브레이크의 예


차 바퀴와 함께 회전하는 디스크 양면에 유압식 기구(캘리퍼)와 패드를 장착, 패달을 밟으면 패드가 유압에 의해 디스크 쪽으로 조여지면서 감속력을 얻는 방식으로 구조도 간단해 정비/교체가 용이하고 안정적으로 제동을 할 수 있다는 장점이 있다.

728x90


이런 디스크들은 보통 금속제로 되어 있어 제동시 마찰에 의해 열을 받게 되는데, 아무래도 금속이 열을 받으면 팽창하거나 변형하거나 해서 제동력이 떨어지는 경우가 있기 때문에 많은 경우 디스크의 방열 성능을 더욱 높이기 위해 위에 언급한 V디스크를 적용한다. 요즘은 거의 대부분의 승용차의 전륜 브레이크는 V디스크를 쓴다. 제동시 무게가 앞으로 쏠리기 때문에 앞바퀴 브레이크가 더 부담을 받기 때문이다. 대부분 승용차가 뒷바퀴에는 싱글 디스크, 지름이 더 작은 로터를 쓴다. 심지어 소형차, 경차나 저가 차량은 뒷바퀴에는 드럼 디스크를 쓰기도 한다. 물론 무겁거나 출력이 높은 차는 네 바퀴 다 벤틸레이티드 디스크 로터를 쓴다. 고성능 차량은 크고 두꺼운 디스크 로터를 써야 하는데 이로 인한 무게의 불리함을 극복하려고 가운데 부위(벨하우징)를 알루미늄 합금으로 제작하여 조립한 2피스 디스크 로터가 적용된다.

추가적으로 타공이나 슬롯을 넣어주기도 한다. 브레이크 패드 온도가 높아지면 금속 가루같은 브레이크 패드 물질을 묶어두는 레진같은 바인더가 녹으면서 기체로 바뀌는데, 이 기체가 로터와 패드 사이에 에어하키 테이블처럼 서로 닿지 못하게 만들어 주는 효과가 있는데, 타공과 슬롯 처리를 하면 그 기체가 자연스럽게 빠질 수 있도록 하는 효과가 있다고 한다. 그리고 타공 처리는 냉각 효과도 있다. 단점으로는 디스크의 강도를 약화시키며, 특히 타공 로터는 구멍을 따라 응력이 발생해서 순정이 태생적으로 튼튼한 타공 로터가 아니라 두께는 평범한 순정 로터랑 동일한데 애프터마켓으로 나온 타공 로터는 굉장히 자주 파손된다. 게다가 요즘 나오는 브레이크 패드는 바인더 가스 생성이 굉장히 적어서 필요성이 거의 없다. 단점이자 장점이라고 볼 수 있는 점은 슬롯 로터가 특히 강판처럼 브레이크 패드를 금방 갈아버리는 성질이 있는데, 좋게 보면 브레이크 패드를 금방 소모하면서 온도를 낮추고 열변환이 이루어진 표면을 갈아버리는 효과를 볼 수 있고, 나쁘게 보면 패드 소모가 심해 먼지도 많이 나고 지갑도 금방 털리는 단점이 있다. 게다가 얇은 패드는 로터에서 피스톤으로 열이 더 많이 전달되어 브레이크액이 더 쉽게 과열된다.

현재 해외 자동차 커뮤니티의 의견으로는 스포츠 드라이빙이나 트랙주행용 차량은 오히려 싼 로터를 쓰고 때가 되면 금방금방 교체하는게 타공이나 슬롯 로터를 쓰는 것 보다 저렴하고 파손 걱정에서 안전하다고 하나, 타공 슬롯 로터의 짜세(..)는 무시할 수 없기에 튜닝을 좋아하는 사람의 차에 자주 장착되곤 한다.

유압을 가해 주는 피스톤의 개수가 많으면 더욱 고른 제동력을 보일 수 있으므로 고성능 차량을 중심으로 4개 이상의 피스톤이 자주 사용되고 있다. 캘리퍼를 장착하는 위치에 따라 앞쪽에 있으면 전치형, 뒷쪽에 있으면 후치형이다. 전치형 캘리퍼는 제동 시 너클을 바닥으로 누르며, 후치형 캘리퍼는 너클을 들어올린다. 후치형 캘리퍼가 냉각에 유리하며, 제동시 너클을 들어버리므로 현가하질량을 줄일 수 있다. 여기에 캘리퍼 질량을 차체 중심으로 몰아버릴 수 있고, 제동 시 하중이동으로 생기는 피칭의 역방향 피칭을 만들어 피칭이 줄어드는 등의 장점을 고려하면 성능적으로 가장 우수한 것은 전륜 후치형, 후륜 전치형 조합이다. 그러나 작정하고 달리기 위해 만드는 스포츠카나 슈퍼카가 아니면 캘리퍼의 위치에 따른 효과가 별로 안 느껴지기 때문에 양산차 제조사는 서스펜션, 스티어링 설계가 끝난 뒤 남는 자리에 브레이크 캘리퍼를 배치하며, 전륜 전치형, 후륜 후치형 조합이 가장 많이 사용된다. 스포츠카나 슈퍼카 등의 고성능 차량은 조금이라도 브레이크의 성능을 끌어올리기 위해 웬만하면 전륜은 후치형, 후륜은 전치형으로 배치하는 편이다.

초고성능 차량의 경우 금속 디스크 사용시 발열로 접촉한 브레이크 패드를 태워버려 브레이킹 성능이 대폭 하락할 우려가 있어 카본-카본 세라믹제 브레이크 디스크를 사용하는 경우도 있다. 세라믹 디스크는 무게가 가벼워 가감속 성능 및 현가하질량 감소를 통한 접지력 증대의 효과도 있다. 게다가 일반 철제 로터보다 강성이 월등히 뛰어나고 열을 받아도 휘어지거나 하는 문제가 적고, 브레이크를 쓰면서 로터가 철제 로터에 비해 훨씬 덜 갈린다. 별다른 사고가 있지 않는 한 사실상 차량 수명과 함께 반영구적으로 쓸 수 있는 로터이다. 물론 이런 브레이크의 부품값은 그야말로 상상을 초월하여, 디스크 4개 1대분 부품값만 소형차 1대 값에 육박하는 경우도 있다. 포르쉐 세라믹 컴포지트 브레이크 PCCB의 경우 공임제외 4짝 1,400만원이라는 초월적인 가격을 자랑한다. 게다가 철제 로터와는 별개로 카본 세라믹 디스크 전용 패드가 따로 있으며 이 가격도 무지막지하다.

하지만 주차 브레이크 용도로는 디스크 브레이크로는 성능이 딸리는 단점이 있으므로 후륜 디스크 브레이크 허브쪽에 드럼 브레이크를 탑재한 drum in hat(DIH) 구조의 브레이크가 주차 브레이크로 사용된다. 그러나 차량 제조사들도 이런 복잡한 구조를 개선하고 무게와 원가를 줄이기 위해 디스크 브레이크에 케이블 기구로 뒷쪽 캘리퍼 피스톤이 움직여 주차 브레이크 기능을 수행하게 만드는 경우가 증가하고 있다.

요즘 대부분의 차량은 디스크 및 캘리퍼가 휠 내측 허브와 너클에 장착되지만, 인보드 디스크 브레이크라고 해서 아에 CV구동축의 내측에 붙는 방식이 있다. 장점으로는 현가질량 감소와 차량 무게중심의 중앙집중화를 통한 운동 성능 향상, 상대적으로 이물질로부터 안전한 차량 내측에 있어서 디스크 손상 우려가 적은 점, 휠과의 간섭걱정 없이 큰 디스크와 캘리퍼를 장착할 수 있다. 단점은 냉각에서 불리한 측면이 있고, 엔진괴 미션을 가로배치한 전륜구동 차량 처럼 내측 공간이 부족할 경우 인보드로 탑재가 힘들며, 구동축이 원래 받는 가속토크와 반대방향의 제동토크까지 받게되어 구동계의 부담이 커지고 급제동시 브레이크가 장착된 구동계 전체가 차체를 쾅 치는 충격이 오기 때문에 이를 없애기 위한 마운트 설계가 복잡해진다. 그리고 비구동륜의 경우 인보드 방식을 쓰려면 필요없던 구동축을 장착해야 하니 이점이 없다.

이와는 별개로, FR이나 4WD차량, 옛날 경주차들의 경우 추진축이나 CV조인트쪽에 디스크 로터를 추가로 설치하는 경우도 있다. 승용차에선 이제 볼 수 없는 방식이지만, 평상시보다 적재물 추가시 훨씬 무거워지는 트럭이나 트레일러 등을 견인하는 픽업 트럭의 추가 제동력 확보를 위해서 드라이브 라인 브레이크라는 장치를 장착하는 경우도 있다. 주차 브레이크용의 센터 드럼과는 별개로 디스크 + 캘리퍼 구조로 장착되며, 여기서 한발 더 나가면 엔진의 냉각수까지 끌어들여서 냉각하는 제품까지 튜닝용품으로 나온다. 의외로, 자동차는 아니지만 경운기에도 쓴다. 트레일러를 달 때, 그 후륜 축에 디스크 브레이크를 쓰고 있다. 무거운 것을 자주 싣고, 험한 데를 가야 하기 때문.

여담으로 디스크 브레이크의 성능은 디스크의 구경(지름)에 비례하기 때문에 버스가 전통적인 스틸 디스크를 사용하더라도 엄청난 제동력을 보이는 것은 이것 때문이다.

유명한 브레이크 제조사로는 한국의 만도와, 독일의 ATE, 일본의 닛신(日信工業, Nissin)과 아케보노(曙ブレーキ, Akebono), 미국의 TRW나 반딕스가 일반 양산 차량용 순정 브레이크 하드웨어를 주로 공급하며, 고성능 모델이나 레이싱용으로는 흔히 브레이크 4대 천왕으로 일컫는 그 유명한 이탈리아의 브렘보(Brembo)와, 영국의 AP레이싱(AP Racing)과 알콘(Alcon)이, 그리고 독일의 무빗(MOVIT) 브레이크가 있다. 기타 튜닝용 애프터마켓 내지, 레이싱용으로는 미국의 스탑테크(Stoptech)와 윌우드(Wilwood), 로토라(Rotora)가 있으며 일본의 프로젝트 뮤 등이 뛰어난 성능과 착한 가격으로 괜찮은 가성비를 내세우며 4대 천왕들의 아성에 도전중이다.

브레이크에 반드시 장착되어야 하는 가장 중요한 핵심 소모품인 브레이크 패드의 경우에는 의외로 한국이 세계적으로도 상당한 점유율을 자랑중에 있는데, 정작 한국사람들은 잘 모르는(...) 강소기업이 좀 있다. 대표적으로 왠만한 일반인들도 한번쯤은 들어본 상신 브레이크나, 한타(프릭사) 브레이크 이외에도, 엘림 브레이크와 홍성 브레이크, KB오토시스(구 한국베랄)와 대화 브레이크등이 수출 역군으로 기술력을 세계적으로 인정받으며 활발히 활동중에 있다. 비교적 신생업체이긴 하나, 애프터마켓 튜닝이나 레이싱용의 브레이크 패드 분야에서 뛰어난 성능과 합리적인 가격으로 상당한 주목을 받고 있는 데피고(Defigo) 역시 한국 기업이다.


오토바이용 디스크 브레이크


대체적으로 큰 틀은 MTB와 크게 차이나지 않는다. 핸들에 마스터 실린더와 레버를 장착하고, 레버의 움직임에 따라 유압 호스를 통해 캘리퍼에 유압을 전달하여 패드를 작동, 디스크를 붙잡아 정지시키는 방식이다.
다만 속도가 자전거보다 훨씬 빠르기 때문에 브레이크의 용량과 디스크의 두께에서 차이가 나게 된다.

또한 고속에서 제동시 굉장한 열이 발생하는데, 저속 스쿠터 등의 디스크는 발열이 적어 디스크가 그대로 휠에 장착되지만, 고속에서 작동하는 브레이크는 열이 허브베어링에 전달되지 않도록 대부분 별도의 브라켓(혹은 캐리어라고도 부름)을 통해 휠과 연결된다. 브라켓들은 대부분 열 및 변형에 내성을 가진 경량 소재로 제작된다. 물론 디스크의 무게를 줄여주는 효과도 덤이다.

오토바이는 브레이크 사이즈가 작고 자동차처럼 진공으로 제동력을 보조받을 수 없고 오로지 라이더의 손가락 힘으로만 세워야 하기 때문에 고성능 이륜차에서는 디스크와 캘리퍼를 전륜에 두개를 달게 된다. 출력이 작고 무게가 가벼운 스쿠터는 1피스톤 짜리로 충분하나, 고성능 모델은 4개이상의 피스톤을 가진 캘리퍼가 쓰인다.

마스터 실린더의 경우 핸들과 평행하게 배치된것과 수직으로 배치(래디얼 마운트)된 타입으로 나뉜다. 보통 수평형이 보급형이고 수직이 고급형이다. 수직형이 손가락으로 브레이크 답력을 곧바로 느낄 수 있어 컨트롤이 편하다.

튜닝을 할 경우 보통 적은 비용으로 큰 효과를 보는건 유압 호스를 고무호스에서 철사 등 질긴 재질로 외피를 감싼 메쉬호스이다. 고무호스는 유압력이 전해질때 팽창하면서 어느정도의 손실을 보는데 반해 메쉬호스는 팽창률이 적다. 그 다음은 소모품인 브레이크 패드를 고가형으로 바꾸고, 그 다음 효과를 크게 보는 건 마스터 실린더를 대용량으로 바꾸는 것이다. 이 경우 브레이크 오일통, 레버까지 바꾸게 된다. 보통 캘리퍼까지는 바꾸지 않는 편. 애초에 애프터마켓 제품이 나오는 기종이 많지 않다.

모터사이클용 브레이크 메이커는 차량용도 만드는 브렘보, 닛신, 윌우드 외에도 토키코, AP Racing 등 국가별로 여러 메이커들이 혼재한다.

보통 두카티, BMW Motorrad 등 유럽 메이커에는 순정으로 브렘보가 달려 있고, 혼다, 야마하 등의 일제 메이커에는 닛신제 브레이크가 순정으로 달려있다.

트리플 캘리퍼



닛신제 전륜용 4피스톤 레디얼마운트 캘리퍼를 3개 활용했고 캐리어는 알루미늄 덩어리를 깎아 만든거다. 이런건 공도 주행보다는 주로 브레이킹으로 후륜을 미끄러뜨린 뒤 드리프트 등의 묘기를 보이는 쇼바이크 용이다. 오토바이는 공도에서 후륜을 저렇게 강하게 제동해봐야 슬립 전도사고만 유발할 뿐이다.


비행기용 디스크 브레이크

 


비행기에서도 디스크 브레이크를 주요 제동수단 중 하나로 사용한다.

소형 비행기의 경우 자동차와 비슷한 방식의 싱글 디스크 브레이크를 사용하나 우리가 보통 타는 민항기 크기가 될 경우 거대한 크기의 다중 디스크 브레이크를 사용하며, 착륙 제동시에 발열이 엄청난 랜딩기어 브레이크 특성상 열 발산에 유리하도록 로터가 분할된 분할로터 다중 디스크 브레이크 및 브레이크 냉각팬을 사용하기도 한다. 그리고 노즈(트라이시클 방식)/테일기어(테일드래거)에 하중이 별로 실리지 않는 비행기 특성상 브레이크는 메인기어에 장착되어 있다.

A320의 카본 분할로터 다중 디스크 브레이크 분할로터 다중 디스크 브레이크의 구조




A320의 브레이크 팬, 덕트 내의 팬을 보면 된다.



경비행기의 디스크 브레이크



728x90
그리드형

'잡다한 지식 한스푼' 카테고리의 다른 글

탄생석 유래  (1) 2022.11.10
트위치 국내 화질 제한 우회 방법  (1) 2022.11.10
드럼 브레이크 구조와 장점및 단점  (1) 2022.11.09
중간선거 특징  (0) 2022.11.09
국내 골프장 목록  (0) 2022.11.04

댓글